Adaptive Monte Carlo for Nuclear Data Evaluation

Georg Schnabel
Outline

Nuclear data evaluation

Pros & cons of existing evaluation methods

Adaptive Monte Carlo method

General procedure to fit complex non-linear models to data providing detailed uncertainty information of parameters
Application chain

Models

- TALYS
- INCL

Experiments

Simulation

- MCNP, GEANT4, ...

Evaluation method

- Linearized method
- Monte Carlo method

Simulation

- Perturbation Theory
- Total Monte Carlo

Element Production

- El. Prod. #1
- El. Prod. #2
- ...

Production + Cov

Database (DB)

- EXFOR

Production + Cov

Production + Cov
Linearized method

\[\tilde{\rho}_1 = \tilde{\rho}_0 + A_0 S^T (S A_0 S^T + B)^{-1} (\tilde{\sigma}_{\text{exp}} - M_{\text{Lin}}(\tilde{\rho}_0)) \]

\[A_1 = A_0 - A_0 S^T (S A_0 S^T + B)^{-1} S A_0 \]
Iterative linearized method

Starting at best prior estimate p_0

Starting somewhere else
Comparison of results

Note:
Not happy with any of the results? In Bayesian statistics, you get what you assume.

What about giving up the assumption of a perfect model?
Monte Carlo method

Ideally, draw samples p_1, p_2, \ldots from posterior

$$\pi(p | \bar{\sigma}_{\text{exp}}) \propto \mathcal{N}(\bar{\sigma}_{\text{exp}} | \mathcal{M}(p), B) \times \mathcal{N}(p | \bar{p}_0, A_0)$$

Not possible, use another distribution, e.g.

$$\tau(p) = \mathcal{N}(p | \bar{p}_0, A_0)$$

Calculate weights for the results p_i afterwards

$$\omega_i = \frac{\pi(p_i | \bar{\sigma}_{\text{exp}})}{\tau(p_i)}$$

Calculate mean, etc.

$$\bar{\sigma}_{\text{eval}} = \frac{\sum_{i=1}^{N} \omega_i \mathcal{M}(p_i)}{\sum_{i=1}^{N} \omega_i}$$
Monte Carlo in practice

Effective Sample Size

\[N_{\text{eff}} = \frac{\left(\sum_{i=1}^{N} \omega_i \right)^2}{\sum_{i=1}^{N} \omega_i^2} \]

\[N = 500 \text{ but } N_{\text{eff}} = 1 \]
Best of both worlds

Linearized method
 fast computation
 inaccurate results

Monte Carlo method
 accurate results
 slow computation

Adaptive Monte Carlo
 fast computation
 accurate results
Adaptive Monte Carlo

If effective sample size too low:

\[N_{\text{eff}} = \left(\frac{\sum_{i=1}^{N} \omega_i}{\sum_{i=1}^{N} \omega_i^2} \right)^2 \]

then select the \(K \) parameter configurations \(p_k \) with highest weights \(w_k \) and for each of them construct a

linearized nuclear model

\[M_{\text{Lin}}^{k}(\bar{p}) = M(\bar{p}_k) + S_k(\bar{p} - \bar{p}_k) \]

and apply

linearized evaluation method

\[
\begin{align*}
\bar{p}_{ev,k} &= \bar{p}_0 + A_0 S_k^T (S_k A_0 S_k^T + B)^{-1} (\tilde{\sigma}_{\exp} - M_{\text{Lin}}^{k}(\bar{p}_0)) \\
A_{ev,k} &= A_0 - A_0 S_k^T (S_k A_0 S_k^T + B)^{-1} S_k A_0
\end{align*}
\]

to improve sampling distribution

\[\tau_{s+1}(\bar{p}) = \tau_s(\bar{p}) + \sum_{k=1}^{K} \beta_k N(\bar{p} | \bar{p}_{ev,k}, A_{ev,k}) \]
Adaptive Monte Carlo

Draw first sample

Learning step
1) Select points with largest weights

N_{\text{eff}} \text{ too low}

Draw second sample

2) Apply linearized method for these points

Draw third sample

\[\tau_{s+1}(\vec{p}) = \tau_s(\vec{p}) + \sum_{k=1}^{K} \beta_k N(\vec{p} | \vec{p}_{ev,k}, \mathbf{A}_{ev,k}) \]
Evolution of sampling
Comparison of distributions

sampling distribution

posterior distribution
Summary

Adaptive Monte Carlo scheme*
- faster than usual Monte Carlo Methods
- more accurate than Linearized Methods

General purpose optimization algorithm
- exploits parallel computation
- provides detailed uncertainty information

* can be adapted to work with non-Gaussian parameter distributions or non-Gaussian uncertainties in experiments
Outlook

- Non-parametric optimization and uncertainty quantification of INCL cross sections
- Make treatment of model defects feasible in Monte Carlo evaluation methods
- Speed up Total Monte Carlo approach
- Constrain nuclear model parameters by both differential and integral data
- Optimize geometry with respect to integral observables
- Generate R-matrix fits
- ...

Thank you!

project CHANDA
#605203, WP11

Georg Schnabel
georg.schnabel@cea.fr